Abstract

We present a theoretical study on the potential energy surface and vibrational bound states of the E electronic excited state of the HeI(2) van der Waals system. The interaction energies are computed using accurate ab initio methods and large basis sets. Relativistic small-core effective core potentials in conjunction with a quintuple-zeta quality basis set are employed for the heavy iodine atoms in multireference configuration interaction calculations for the (3)A' and (3)A" states. For the representation of the potential energy surface we used a general interpolation technique for constructing potential surfaces from ab initio data based on the reproducing kernel Hilbert space method. The surface presents global and local minima for T-shaped configurations with well-depths of 33.2 and 4.6 cm(-1), respectively. Vibrational energies and states are computed through variational quantum mechanical calculations. We found that the binding energy of the HeI(2)(E) T-shaped isomer is 16.85 cm(-1), in excellent agreement with recent experimental measurements. In lieu of more experimental data we also report our predictions on higher vibrational levels and we analyze the influence of the underlying surface on them. This is the first attempt to represent the potential surface of such a highly excited electronic state of a van der Waals complex, and it demonstrates the capability of the ab initio technology to provide accurate results for carrying out reliable studies to model experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.