Abstract

We theoretically analyzed positron affinities (PA) of hydrogen cyanide (HCN) molecule at vibrational excited states to elucidate the effect of molecular vibrations on the binding of a positron to the molecule. Using the configuration interaction method in the multi-component molecular orbital theory and anharmonic vibrational state analysis with the variational Monte Carlo technique, we found that the vibrational excitations of the CN and CH stretching modes enhance the PA value compared to that of the vibrational ground state, whereas the excitation of bending mode deenhances it. The largest PA enhancement is found at the excited states of the CH stretching mode; the PA values are 43.02 (1) and 46.34 (2) meV for the fundamental tone and overtone states, respectively. With the linear regression analysis, we confirmed that the PA variation of HCN molecule at each vibrational state arises from the variation of permanent dipole moment and dipole-polarizability due to each vibrational excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.