Abstract

Using ab initio many-body perturbation theory (within GW approximation and Bethe-Salpeter equation), including electronic exchange, correlation, and electron-hole interaction effects, we study the optical properties of large-diameter semiconducting single-walled carbon nanotubes (SWCNTs). The calculated energies of the lowest two optically allowed transitions (E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> and E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">22</sub> ) agree well with those deduced from experiments. The lowest optical allowed transition of these tubes is between the first two van Hove singularities on each side of the Fermi level, which is different from that of small-diameter tubes. The exciton binding energy for E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> is calculated, which is consistent with that of the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.