Abstract

Correlated photon pairs are the core resources for photonic quantum information technology. Multiplexed quantum light sources can appreciably improve the efficiency of quantum information processing. Here, we develop a coupled-mode mean-field model and its corresponding semiclassical theory analysis to investigate the multiple parametric-gain sidebands in dispersion-oscillation fiber-ring cavities. We present a cycle transfer matrix method to give the analytic expressions for parametric gain. From this, we can reach a physical insight, that is additional degree of freedom introduced by the modulation along fiber length is responsible for the multiple parametric-gain sidebands, where the underlying mechanism is the quasi-phase matching of four-wave mixing. Two twin signal and idler photons generated from parametric-gain sidebands are appreciably of frequency and temporal correlation, revealing promising applications in frequency-multiplexed photon pair sources. When we construct an optical cavity with spliced single mode fiber and dispersion shifted fibers, numerous parametric-gain sidebands grow in the vicinity of zero group-velocity-dispersion wavelengths of two fibers, i.e., 1310 nm and 1550 nm, both corresponding to low transmission loss windows of fibers. Therefore, frequency-multiplexed quantum light sources established on dispersion-oscillation fiber-ring cavities have the advantages in economy, remote transmission, scalability and compatibility with fiber communication network. Our work offers inspiration for the development of a multiplexed quantum light source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call