Abstract

ABSTRACTTheoretical computations utilising both CCSD and MP2 methods and the cc-pVTZ basis set have been carried out to determine the structures of several conformations as well as the internal rotation potential energy functions for 2-cyclopropen-1-ol, 2-cyclopropen-1-thiol and 2-cyclopropen-1-amine. The energies and wavefunctions for these potential functions have also been computed. Each of these molecules has an energy minimum corresponding to a conformation with intramolecular π-type hydrogen bonding. The π bonding stabilisation is about 2.3 kcal/mole for the alcohol, 2.1 kcal/mole for the thiol, and about 2.5 kcal/mole for the amine. The results for the thiol demonstrate a rare example of intramolecular π-type hydrogen bonding. The calculated O–H, S–H, N–H, and C=C stretching frequencies have also been compared for the conformations with and without the π-type hydrogen bonding. The C=C stretching frequency is substantially lower in all cases for the hydrogen bonded conformers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.