Abstract

By using an effective dielectric constant to modify the nanoplasma model, the interactions of large Ar clusters with high-intensity femtosecond laser pulses have been studied. It is shown that the resonance absorption mechanism plays a predominant role in the production of highly energetic argon ions, and the calculated mean kinetic energy of Ar ions is in good agreement with our previous experimental results. The scaling of mean kinetic energy and charge states of Ar ions against cluster size and laser intensity has also been analyzed. The results indicate the existence of optimum cluster sizes and optimum laser intensities where the best coupling efficiency of the laser energy can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.