Abstract

Density functional theory is carried out to study cis-doubly N-confused porphyrin and its metal (Cu3+, Ag3+, and Au3+) complexes. The electronic structures and bonding situations of these molecules have been investigated by using the natural bond orbital analysis and the topological analysis of the electron localization function. We have studied the electronic spectra of cis-doubly N-confused porphyrin and its metal complexes with time-dependent density functional theory. The introduction of group 11 transition metals leads to blueshifts of their electronic spectra with respect to that of cis-doubly N-confused porphyrin. In particular, the absorption spectra of the copper complex show some weak Q bands that mainly arise from a combination of ligand-to-metal charge transfer and ligand-to-ligand charge transfer transitions. The relativistic time-dependent density functional theory with spin-orbit coupling calculations indicates that the effects of spin-orbit coupling on the excitation energies of the copper and silver complexes are so small that it is safe enough to neglect spin-orbit interactions for these two complexes. However, it has a significant effect on the absorption spectra of the gold complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.