Abstract

The full potential linearized augmented plane wave method of density functional theory has been used to investigate the structural, electronic, magnetic and thermoelectric properties of cubic perovskites BaVO3 and LaVO3. The ferromagnetic ground state has been found to be stable by comparing the total energies of non-spin-polarized and spin-polarized calculations performed for optimized unit cells. For both compounds, the bond length and tolerance factor are also measured. From the band structures and density of states plots, it is found that both compounds are half-metallic. We found that the presence of V at the octahedral site of these perovskites develops exchange splitting through p-d hybridization, which results in a stable ferromagnetic state. The observed exchange splitting is further clarified from the magnetic moment, charge and spin of the anion and cations. Finally, we also presented the calculated thermoelectric properties of these materials, which show that half-metallic BaVO3 and LaVO3 materials are potential contenders for thermoelectric applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call