Abstract
Boron dopant incorporation into host GaAs material to form a novel BGaAs semiconductor has been studied using a 10-band kp model. This model allows us to calculate the electronic band structure along the crystallographic direction. So, from the obtained E–k relation, we calculate the carrier effective mass, intrinsic carrier concentration, and x = 0 (GaAs) are in good agreement with previously reported literature. The intrinsic carrier concentration variation is seen as monotonic with boron composition. On the other hand, the composition-dependent Debye temperature observed reduction along with symmetry directions, Λ by 1.23/%B, Σ by − 2.33/%B, and Δ by − 3.52/%B, which leads to the lower stability of crystalline BGaAs alloy. In addition, the interband absorption coefficient as a function of photon energy shows nonmonotonic dependence with fundamental absorption observed at 1.39 eV. Whereas, in the case of quantum well, the optical gain spectrum peak is blueshifted with the density of injected carriers. Hence, this study provides beneficial guidance in the interpretation of applications such as solar cells, optical modulators, multiple QWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.