Abstract

This paper presents a self-consistent nonlinear theory of the current and energy modulations when an electron beam propagates through an inductively-loaded wide gap cavity. The integro-differential equations are obtained to describe the modulation of the beam current and kinetic energy. A relativistic klystron amplifier (RKA) model is introduced, which uses an inductively-loaded wide gap cavity as an input cavity. And a numerical code is developed for the extended model based on the equations, from which some relations about the modulated current and modulated energy are numerically given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.