Abstract
A plasmonic sensor based on a metal–insulator–metal waveguide with a side-coupled nanodisk resonator is proposed and numerically investigated using a finite-difference time-domain method. The numerical simulation results indicate that more than one sharp resonance dip appears in the transmission spectrum in the telecommunication regime, and each resonance wavelength has a linear relationship with the refractive index of the dielectric in the resonator. In addition, the sensing characteristics of the structure and the influence of its structural parameters are analyzed in detail by investigating the transmission spectra. As a refractive-index sensor, its sensitivity can reach as high as 1150 nm per refractive index unit near the resonance wavelength of 1550 nm, and its sensing resolution can reach 10−6 for a wavelength resolution of 0.01 nm. Furthermore, by employing the relationship between the temperature and the refractive index, the temperature-sensing characteristics of the structure are also discussed. Near the resonance wavelength of 1550 nm, the temperature sensitivity can reach 0.45 nm/°C. The sensor has a compact and simple structure and may find many potential and important applications in optical networks-on-chip and on-chip nanosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.