Abstract

In this paper, density functional theory (DFT) and time-dependent density functional theory (TDDFT) are used to study the complexation characteristics CdTe QDs with four different capping agents, i.e. 3-mercaptopropionic acid (MPA), reduced glutathione (GSH), 1-thioglycerol (TG) and 2-mercaptoethanesulfonate (MES). The properties of these complexes are analyzed by the complexation free energies, bond lengths, LOL, ADCH charges, frontier molecular orbitals and the UV-Vis absorption spectra. The results indicate that the four capping agents could form stable complexes with CdTe QDs. Whether the four capping agents interact with (CdTe)6 or (CdTe)9, MES has the strongest complexation ability with CdTe QDs and the MES-complexes are the most stable. For (CdTe)6, A2-MES is the most stable configuration. The complexation free energy and bond length of A2-MES are - 74.50kcal/mol and 2.461Å, respectively. When (CdTe)9 as substrate, A4-MES is the most stable configuration and corresponding complexation free energy is - 100.97kcal/mol, which is followed by A4-MPA (- 57.75kcal/mol) and A3-TG (- 60.20kcal/mol), while A4-GSH (- 44.47kcal/mol) is the weakest. Moreover, the electron amount transferred from MES to CdTe QDs is the most, and the ADCH charge value is 1.47 e. The absorption intensity of UV-visible light after complexation is also the largest. This is consistent with the result of the complexation free energy. Thus, it can be seen that the complexation abilities of four capping agents are in order of MES > MPA≈TG > GSH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call