Abstract

In this study, we have proposed seven designed symmetrical compounds (C2-C8) having a D-π-A-π-D structure based on derivative carbazole as a donor by introducing various π-spacer groups into the reference compound C1-Ref having a D-A-D structure in order to understand the influence of different π-spacers on their efficiency in BHJ solar cells. Various parameters such as geometrical structures, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), nonlinear optical properties (NLO), optical properties, light-harvesting efficiency (LHE), reorganization energy, chemical reactivity indices, exciton binding energy (Eb), open-circuit voltage (VOC), and fill-factor (FF) have been investigated using the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The results show that the extended π-conjugation of the designed compounds (C2-C8) produces a lower energy gap (Eg), a stronger and broader absorption spectrum, lower reorganization energies and exciton binding, and higher nonlinear optical properties compared to C1-Ref, indicating that these designed compounds are promising as electron donors in BHJ-OSCs. Additionally, the calculated Voc, FF, and LHE of all compounds showed that the C2, C3, C4, C5, and C7 compounds have the best performance in BHJ solar cells compared to the others. In particular, C4 and C5 are excellent candidates for the effective donor materials of BHJ solar cells due to their large Voc, FF, and LHE than the other compounds. This theoretical investigation is expected to provide new strategies to synthesize efficient donor materials for BHJ-OSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call