Abstract

ABSTRACTWhile the external infiltration of water has been identified from modern geothermal and/or fossil hydrothermal systems through stable isotopes, the physicochemical boundary conditions like the initial oxygen isotopes of water $( {{\rm \delta }^{ 18}{\rm O}_{\rm W}^{\rm i} } ) $ and rock as well as alteration temperature were implicitly presumed or empirically estimated by the conventional forward modelling. In terms of a novel procedure proposed to deal with partial re-equilibration of oxygen isotopes between constituent minerals and water, the externally infiltrated meteoric and magmatic water are theoretically inverted from the early Cretaceous post-collisional granitoid and intruded Triassic gneissic country rock across the Dabie orogen in central-eastern China. The meteoric water with a $ {{\rm \delta }^{ 18}{\rm O}_{\rm W}^{\rm i} } $ value of −11.01 ‰ was externally infiltrated with a granitoid and thermodynamically re-equilibrated with rock-forming minerals at 140°C with a minimum water/rock (W/R)o ratio around 1.10 for an open system. The lifetime of this meteoric hydrothermal system is kinetically constrained less than 0.7 million years (Myr) via modelling of surface reaction oxygen exchange. A gneissic country rock, however, was externally infiltrated by a magmatic water with $ {{\rm \delta }^{ 18}{\rm O}_{\rm W}^{\rm i} } $ value of 4.21 ‰ at 340°C with a (W/R)o ratio of 1.23, and this magmatic hydrothermal system could last no more than 12 thousand years (Kyr) to rapidly re-equilibrate with rock-forming minerals. Nevertheless, the external infiltration of water can be theoretically inverted with oxygen isotopes of re-equilibrated rock-forming minerals, and the ancient hydrothermal systems driven by magmatism or metamorphism within continental orogens worldwide can be reliably quantified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.