Abstract
In this work, different levels of quantum computational models such as MP2, ADC(2), CASSCF/CASPT2, and DFT/TD-DFT have been employed to investigate the photophysics and photostability of a mycosporine system, mycosporine glycine (MyG). First of all, a molecular mechanics approach based on the Monte Carlo conformational search has been employed to investigate the possible geometry structures of MyG. Then, comprehensive studies on the electronic excited states and deactivation mechanism have been conducted on the most stable conformer. The first optically bright electronic transition responsible for the UV absorption of MyG has been assigned as the S2 (1ππ*) owing to the large oscillator strength (0.450). The first excited electronic state (S1) has been assigned as an optically dark (1nπ*) state. From the nonadiabatic dynamics simulation model, we propose that the initial population in the S2 (1ππ*) state transfers to the S1 state in under 100 fs, through an S2/S1 conical intersection (CI). The barrierless S1 potential energy curves then drive the excited system to the S1/S0 CI. This latter CI provides a significant route for ultrafast deactivation of the system to the ground state via internal conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.