Abstract

Using density functional theory, we have analyzed the ways and means of improving the minority carrier lifetime (MCL) by calculating the band structure dependent quantities contributing to the MCL. We have computationally modeled silicon doped with different elements like B, C, N, O, P, Ti, Fe, Ga, Ge, As, In, Sn, Sb, and Pt and looked at the effect of doping on MCL. In co-doping, the systems Si-B-Ga, Si-B-Ge, Si-B-2Ge, Si-B-Pt, Si-Ga-Ge, Si-Ga-2Ge, and Si-Ga-Pt are investigated. From our calculation, it is found that by doping and co-doping of Si with suitable elements having “s” and “p” electrons, there is a decrease in the recombination activity. The predicted effective minority carrier lifetime indicates the possibility of significant improvements. Based on the above studies, it is now maybe possible, with suitable choice of dopant and co-dopant material, to arrive at part of a standard production process for solar grade Si material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.