Abstract
Emission of 2-chlorophenols (2-CPs) can cause serious air pollution and health problems. Here, the reaction kinetics and products of key radicals in 2-CPs photo-oxidation are explored in both gaseous and heterogeneous reactions. Quantum chemical calculations show that •OH-addition pathways are more preferable than H-abstraction pathways in gas phase, while that is opposite in heterogeneous phase. At 298 K, the overall rate coefficients of the title reactions in gas and heterogeneous phases are 3.48 × 10−13 and 2.37 × 10−13 cm3 molecule−1 s−1 with half-lives of 55.3 h and 81.2 h, respectively. The strong H-bonds between linear Si3O2(OH)8 and 2-CPs change the energy barriers of initial •OH-addition and H-abstraction reactions, resulting in the competition between heterogeneous reactions and gas phase reactions. The products in heterogeneous reactions are chloroquinone and HONO, which can cause atmospheric acid deposition and eco-toxicity. In gas phase, self-cyclization of alkoxy radical (RO•) leads to formation of •HO2 and highly‑oxygenated molecules, which cause formation of secondary organic aerosol. It is emphasized that oxidation of 2-CPs by •OH leads to formation of more toxic products for aquatic organisms. Therefore, more attention should be focused on the products originated from •OH-initiated reactions of (2-)CPs in gaseous and heterogeneous reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.