Abstract
As an excellent conductive herbicide, swep is widely used in weed removal. Its remaining in atmosphere and water can not only contaminate the environment but also pose a threat to human health. This work presented a systematic theoretical study of HO•-mediated degradation mechanisms and kinetics of swep in atmosphere and water environment. HO•-addition reaction was the dominant reaction type and the main degradation products N-(3-chloro-4-hydroxyphenyl)carbamate (P2), N-(3,4-chloro-6-hydroxyphenyl)carbamate (P3) and N-(3,4-chloro-2-hydroxyphenyl)carbamate (P11) were in good agreement with the experimental results. The total rate constants of swep with HO• were determined to be 3.37 × 10−12 and 7.73 × 10−12 cm3 molecule−1 s−1 (at 298 K) in atmosphere and water environment, respectively. As an excellent adsorbent and photocatalyst, zinc oxide (ZnO) was selected to study the adsorption and catalytic degradation mechanism of swep. The adsorption configuration of (ZnO)n clusters with swep was most stable when n = 6. The adsorption of (ZnO)6 cluster was more favorable to the H-atom abstraction reaction. The toxicities of swep and its degradation products to aquatic organisms were predicted. The degradation of swep induced by HO• was beneficial to the survival of aquatic organisms. This work would provide a comprehensive theoretical basis for understanding the degradation behavior of organic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.