Abstract

Mpro, the main protease and a crucial enzyme in SARS-CoV-2 is the most fascinating molecular target for pharmacological treatment and is also liable for viral protein maturation. For antiviral therapy, no drugs have been approved clinically to date. Targeting the Mpro with a compound having inhibitory properties against it can hinder viral replication. The therapeutic potential of the antiviral compound Nirmatrelvir (NMV) against SARS-CoV-2 Mpro was investigated using a systematic approach of molecular docking, MD simulations, and binding free energy calculation based on the MM-GBSA method. NMV, a covalent inhibitor with a recently revealed chemical structure, is a promising oral antiviral clinical candidate with significant in vitro anti-SARS-CoV-2 action in third-phase clinical trials. To explore the therapeutic ability and possible drug resistance, the Mpro system was studied for WT and two of its primary mutants (C145A & C145S). The protein-ligand (Mpro/NMV) complexes were further examined through long MD simulations to check the possible drug resistance in the mutants. To understand the binding affinity, the MM-GBSA method was applied to the Mpro/NMV complexes. Moreover, PCA analysis confirms the detachment of the linker region from the major domains in C145S and C145A mutants allowing for conformational alterations in the active-site region. Based on the predicted biological activities and binding affinities of NMV to WT and mutant (C145A & C145S) Mpro, it can be stipulated that NMV may have conventional potency to act as an anti-viral agent against WT Mpro, while the catalytic-dyad mutations may show substantial mutation-induced drug resistance. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call