Abstract
Single-atom catalysts are proven to be an effective strategy for suppressing shuttle effect at the source by accelerating the redox kinetics of intermediate polysulfides in lithium-sulfur (Li-S) batteries. However, only a few 3d transition metal single-atom catalysts (Ti, Fe, Co, Ni) are currently applied for sulfur reduction/oxidation reactions (SRR/SOR), which remains challenging for screening new efficient catalysts and understanding the relationship between structure-activity of catalysts. Herein, N-doped defective graphene (NG) supported 3d, 4d, and 5d transition metals are used as single-atom catalyst models to explore electrocatalytic SRR/SOR in Li-S batteries by using density functional theory calculations. The results show that M1 /NG (M1 = Ru, Rh, Ir, Os) exhibits lower free energy change of rate-determining step and Li2 S decomposition energy barrier, which significantly enhance the SRR and SOR activity compared to other single-atom catalysts. Furthermore, the study accurately predicts the by machine learning based on various descriptors and reveals the origin of the catalyst activity by analyzing the importance of the descriptors. This work provides great significance for understanding the relationships between the structure-activity of catalysts, and manifests that the employed machine learning approach is instructive for theoretical studies of single-atom catalytic reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.