Abstract

The role of pyridinium cations in electrochemistry has been believed known for decades, and their radical forms have been proposed as key intermediates in modern photoelectrocatalytic CO(2) reduction processes. Using first-principles density functional theory and continuum solvation models, we have calculated acidity constants for pyridinium cations and their corresponding pyridinyl radicals, as well as their electrochemical redox potentials. Contrary to previous assumptions, our results show that these species can be ruled out as active participants in homogeneous electrochemistry. A comparison of calculated acidities and redox potentials indicates that pyridinium cations behave differently than previously thought, and that the electrode surface plays a critical (but still unknown) role in pyridinium reduction. This work substantially alters the mechanistic view of pyridinium-catalyzed photoelectrochemical CO(2) reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.