Abstract

Cocrystal explosive is getting more and more attention in high energy density material field. Different molar ratios of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1-Methyl-4,5-dinitro-1H-imidazole (MDNI) cocrystal were studied by molecular dynamics (MD) simulation and quantum-chemical density functional theory (DFT) calculation. Binding energy of CL-20/MDNI cocrystal and radial distribution function (RDF) were used to estimate the interaction. Mechanical properties were calculated to predict the elasticity and ductility. The length and bond dissociation energy of trigger bond, surface electrostatic potentials (ESP) of CL-20/MDNI framework were calculated at B3LYP/6-311[Formula: see text]G(d,p) level. The results indicate that CL-20/MDNI cocrystal explosive might have better mechanical properties and stability in a molar ratio 3:2. The N–NO2 bond becomes stronger upon the formation of intermolecular H-bonding interaction. The surface electrostatic potential further confirms that the sensitivity decreases in cocrystal explosive in comparison with that in isolated CL-20. The oxygen balance (OB), heat of detonation ([Formula: see text], detonation velocity ([Formula: see text] and detonation pressure ([Formula: see text] of CL-20/MDNI suggest that the CL-20/MDNI cocrystal possesses excellent detonation performance and low sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call