Abstract

Geometric, thermodynamic and electronic properties of cationic scandium clusters are studied. Geometric optimizations and stable spin states of Sc2+ are assessed on high level ab-initio coupled cluster method CCSD(T) with different dunning correlation consistent basis sets (aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ). Then, 23 DFT functionals belonging to different classes are evaluated at 6-31G (d), LANL2MB, LANL2DZ and Def2-SVP basis sets, and the results are compared with the benchmarked coupled cluster calculations. Due to excellent correlation, PBEPBE/LANL2DZ was chosen to perform calculation of higher scandium cationic clusters Scn+ (n = 3-13). In addition, we explored relative stability, binding energies, second order energy differences, vertical ionization energies, vertical electron affinities and HOMO-LUMO gaps. Moreover, these results are also compared with the neutral scandium clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.