Abstract

The structures of [Pt2(pop)4]4-, [Pt2(pcp)4]4-, and related species [Pt2(pop)4X2]4- and [Pt2(pop)4]2- in the ground states (pop = P2O5H2(2-), pcp = P2O4CH4(2-), and X = I, Br, and Cl) were optimized using the second-order Møller-Plesset perturbation (MP2) method. It is shown that the Pt-Pt distances decrease in going from [Pt2(pop)4]4- to [Pt2(pop)4X2]4- to [Pt2(pop)4]2-. This is supported by the analyses of their electronic structures. The calculated aqueous absorption spectra at the time-dependent density functional theory (TD-DFT) level agree with experimental observations. The unrestricted MP2 method was employed to optimize the structures of [Pt2(pop)4]4- and [Pt2(pcp)4]4- in the lowest-energy triplet excited states. The Pt-Pt contraction trend is well reproduced in these calculations. For [Pt2(pop)4]4-, the Pt-Pt distance decreases from 2.905 A in the ground state to 2.747 A in the excited state, which is comparable to experimental values of 2.91-2.92 A and 2.64-2.71 A, respectively. On the basis of the excited-state structures of such complexes, TD-DFT predicts the solution emissions at 480 and 496 nm, which is closer to the experimental values of 512 and 510 nm emissions, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call