Abstract

AbstractThe existence of a discontinuity in the modulus of rubber as the strain transitions from compression to extension is strongly suggested by multiple experiments. Classical rubber elasticity theories, however, do not admit such behavior. Here, we investigate a modification of the assumptions of classical elasticity theory to reconcile this discrepancy. We present an analysis of the consequences of assuming that chain forces are nonzero only for chain extension relative to the unstrained state, in contrast to the classical elasticity theory, which assumes that the chain force is directly proportional to the chain end‐to‐end distance (an entropic spring). Assuming an affine transformation of the network node coordinates, we derive two modulus discontinuity factors between compression and extension: D1, based on the differing number of network chains being extended and D2, based on the average differential chain extension. The discontinuities arise due to geometric effects, inherent in the affine transformation between compressive and extensive strains. We find that D1, the ratio of the numbers of participating chains (compressive/extensive = 1.37), suffices to account for the experimentally observed modulus discontinuity in natural rubber of 1.34. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1795–1798, 2010

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call