Abstract

We present a framework to treat quantum networks and all possible transformations thereof, including as special cases all possible manipulations of quantum states, measurements, and channels, such as, e.g., cloning, discrimination, estimation, and tomography. Our framework is based on the concepts of quantum comb---which describes all transformations achievable by a given quantum network---and link product---the operation of connecting two quantum networks. Quantum networks are treated both from a constructive point of view---based on connections of elementary circuits---and from an axiomatic one---based on a hierarchy of admissible quantum maps. In the axiomatic context a fundamental property is shown, which we call universality of quantum memory channels: any admissible transformation of quantum networks can be realized by a suitable sequence of memory channels. The open problem whether this property fails for some nonquantum theory, e.g., for no-signaling boxes, is posed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.