Abstract
First results of a periodic and cluster Density Functional Theory (DFT) study of the uranyl ion (UO2 2+) sorption onto the rutile TiO2(110) face, based on plane wave and localised basis sets, are presented. A five layers slab with its most internal layer frozen to bulk positions was found to be a good surface model. In a first step and as reference data for the sorption process, the [UO2(H2O)n]2+ systems, with n=4 to 6 were studied. Relative solvation energies confirmed that the uranyl ion adopt a pentacoordinated structure in aqueous solution. From localised approach, an overall 0.91 electron transfer from the first hydration shell to the uranyl ion was calculated. Then, a periodic study of the uranyl sorption on a simplified hydroxylated TiO2(110) surface model was investigated. The resulting optimised structural parameters, for the three possible adsorption sites, show that the sorbed uranyl ion first coordination shell (saturated by three water molecules) plays an important role to model the adsorption process. Both methodologies (plane waves and localised atomic orbitals) were also used with a cluster model and gave similar results in agreement with experimental data. This first step in the understanding of the uranyl ion sorption onto the simplified hydroxylated TiO2(110) surface shows that hydrogen bonds should be included in the model in order to perform a more accurate description of the uranyl ion sorption process. A study with this surface model is currently performed in order to calculate the relative stabilities between the different uranyl adsorption sites and to compare with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.