Abstract

The second-order nonlinear optical (NLO) properties of hybrid complexes via coordination interaction between porphyrin and Keggin-type polyoxometalates (POMs) α-[MSiW11O39]3− (M=NbV or VV) are investigated by time-dependent density functional theory (TDDFT). The calculated results show that this kind of organic–inorganic hybrid complexes possesses remarkably large molecular second-order NLO polarizability, especially for the ZnP3P-CC-4-Py-[VSiW11O39]3− (complex 4), which has a computed β0 value of 261,410a.u. and might be an excellent second-order NLO material. The effects of substituted metal atom (M), metalloporphyrin, and π-conjugation on NLO response are analyzed, the substituted metal atom (M) with a large electronegativity, the metalloporphyrin, and the lengthening of π-conjugation are helpful in enhancing the optical nonlinearity of these systems, which reveal the general rules to design the complexes with large optical nonlinearities. Furthermore, the solvent effect largely affects the first-order hyperpolarizability of the complex, it implies that the second-order polarizabilities increased with the increase of the solvent in polarity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call