Abstract

Elucidation of intrinsic working principle of single-phase iron carbide and its facet-dependent catalytic behavior remains a substantial challenge in iron-catalyzed Fischer-Tropsch synthesis. Here, we provided in-depth understanding of the iron carbide phase-dependent and facet-dependent properties on theoretically established Fe5C2 particle model through an approach combining Wulff construction, density functional theory, and microkinetics. We studied two key probe reactions, C2 formation via C1+C1 coupling and CH4 formation, by monitoring surface-dependent thermodynamics and microkinetics. Integration of results thereby allows us to assess the macroscopic catalytic properties at single particle level and evaluate contribution from individual exposed surface. The surface (111) and (101-) are kinetically more viable for C2 formation, whereas CH4 formation is kinetically more facile on surface (010), (110) and (111-). This study enriches the knowledge of the intrinsic working mechanism for single-phase iron carbide and provides fundamental insights into rational design of improved iron-based Fischer-Tropsch synthesis catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.