Abstract

Harmonic generation spectra from H[Formula: see text] molecule ion driven by the chirped pulse combined with a terahertz (THz) pulse have been theoretically investigated by numerically solving the non-Born–Oppenheimer time-dependent Schrödinger equation (NBO-TDSE). The results show that with the introduction of the chirp, the harmonic cutoff is extended, resulting in a smooth supercontinuum. Further, when the initial vibrational state is prepared as [Formula: see text], and by properly adding a THz controlling pulse, the harmonic yield is enhanced by almost six orders of magnitude compared with the single chirped pulse case. Quantum analyses are shown to explain the harmonic extension and enhancement. Furthermore, through the investigation of the isotopic effect, we find that more intense harmonics are generated in the lighter nucleus. Finally, by properly superposing the harmonics, a series of intense 35 as XUV pulses can be obtained, which are almost six orders of magnitude improvement in comparison with the single chirped pulse case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.