Abstract

A comparison of absorption and desorption is conducted using a detailed model describing heat and mass transfer. First, the influences of various assumptions have been evaluated. Second, typical conditions for both absorption chillers and heat transformers have been defined. The performance of absorption and desorption processes have been analysed for a flow length of 0.1 m. In an absorption chiller, during desorption, the viscosity is lowered and the mass diffusivity is increased. These circumstances cause a 46% higher transfer rate as compared to absorption. Thus, the overall performance of the process is determined by the absorber component. In a heat transformer, during absorption at an elevated pressure and temperature level, the viscosity is lower and mass diffusivity is higher as compared to desorption. Therefore, the transfer rate of during absorption is 10% higher as compared to desorption. Hence, the desorber performance is somewhat more influential to the overall system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.