Abstract

Spectroscopic parameters (De, re, μ) are determined for the first-row transition metal hydrides using better than DZP basis sets at the modified coupled pair functional (MCPF) level. Extensive comparisons between MCPF and complete-active space self-consistent field (CASSCF)/MRCI calculations with natural orbital iterations, and studies with more extensive basis sets, show this level of treatment to supply an accurate and cost-effective treatment of these systems. For the transition metal hydrides, the bonding can arise from either the 3dn4s2 or 3dn+14s1 atomic asymptotes, or a mixture of both. Since the dipole moment arising from these two bonding mechanisms is very different, the dipole moment is found to be directly related to the 3d population. Thus, the magnitude of the dipole moments provide a sensitive test of the wave function, and gives insight into the nature of the bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.