Abstract

The mechanism of the copper(I)-catalyzed cyclopropanation reaction has been extensively investigated for a medium-size reaction model by means of B3LYP/6-31G(d) calculations. The starting ethylene complex of the N,N'-dimethylmalonaldiimine--copper (I) catalyst undergoes a ligand exchange with methyl diazoacetate to yield a reaction intermediate, which subsequently undergoes nitrogen extrusion to generate a copper--carbene complex. The cyclopropanation step takes place through a direct carbene insertion of the metal--carbene species to yield a catalyst--product complex, which can finally regenerate the starting complex. The stereochemical predictions of a more realistic model (by considering a chiral bis(oxazoline)--copper (I) catalyst) have been rationalized in terms of steric repulsions, showing good agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.