Abstract

Emerging environmental contaminants have become a crucial environmental issue because of the highly toxic effluents emitted by factories. Ibuprofen (IBP), as a typical anti-inflammatory drug, is frequently detected in water sources. Therefore, its removal using various adsorbents has drawn great interest. Herein, the structural, electronic, energetic, and optical properties of pristine oxo-triarylmethyl (oxTAM) and transition metal-doped oxo-triarylmethyl (TM@oxTAM, TM = Sc, Ti, V, Cr, and Mn) for adsorption of the IBU drug were investigated using density functional theory (DFT) calculations implemented in Gaussian and VASP codes. Frontier molecular orbital (FMO), density of states (DOS), and electronic band structure results demonstrated that transition metal-doped oxTAM causes a significant reduction in the energy band gap (Eg) value of pristine oxTAM, with the highest decrease (30.14 %) in the case of Mn@oxTAM. It was found that transition metal doping onto oxTAM leads to an increase in the adsorption energies (1.20–2.64 eV) and charge density between transition metal and IBU. Natural bond orbital (NBO) analysis revealed that charge was effectively transferred from the IBU towards the transition metal, which was further analyzed by charge decomposition analysis (CDA). Furthermore, quantum theory of atoms in molecules (QTAIM), interaction region indicator (IRI), electron localization function (ELF), and radial distribution function (RDF) analyses revealed that the IBU is adsorbed on the Sc@oxTAM surface via covalent interactions, while electrostatic with partially covalent interactions are dominated in other IBU/TM@oxTAM complexes. The results suggest that TM doping on the oxTAM provides a new insight for developing photocatalyst-based covalent organic frameworks (COFs) to remove emerging pollutants in wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.