Abstract

AbstractNovel stable high spin molecules possessing three different arranged fashions are designed with –·N–N< as a spin‐containing (SC) fragment, various aromatic, such as benzene (1), pyridine (2), pyridazine (3), pyrimidine (4), pyrazine (5), triazine (6) as end groups (EG) and phenyl as a ferromagnetic coupling (FC) unit. The effects of a different end groups on the spin multiplicities of the ground states and their stabilities were investigated by means of AM1‐CI approach. It has been found that the spin densities on the two atoms of the SC fragment are different from delocalization resulting in the specific stability of –·N–N<. In these molecules, the stabilities of the triplet states decrease when the distance between the atoms of central SC (–N–) increases. The orders of the stability of triplet states for 1an, 1bn, 1cn [They are isomers in which SC is connected with FC in different way (1an, N1NNN1; 1bn, N1N N1N; 1cn, NN1N1N) and six heterocycles are EG] show that the stability of triplet states with heterocycles as end groups is higher than that with phenyl as end groups, and in the order:triazine (EG)>pyrimidine, pyrazine>pyridine, pyridazine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call