Abstract

Electrides are ionic substances in which the anionic species is stoichiometrically replaced with localized electrons that reside within crystal voids. Originally discovered in 1983, the past decade has seen a sharp rise in the number of known electride materials, most notably the isolation of the first air- and water-stable electride. As the presence of localized interstitial electrons cannot be directly detected experimentally, researchers have turned to density-functional theory (DFT) to discover new electrides. In this work, we survey eight common theoretical descriptors of electrides for their efficacy in identifying these materials. Illustrative examples are presented for all classes of electrides: organic, inorganic, 2D, elemental, and molecular electrides. In general, density-based descriptors such as the electron localization function (ELF) and localized-orbital locator (LOL) are shown to be the most consistently reliable. Limitations of DFT treatments of electrides are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.