Abstract
A theoretical investigation of the lowest molecular states of LuBr located below 41,700cm−1 in the 2S+1Λ(+/−) and Ω(±) representations when including the spin-orbit effects, has been performed through SA-CASSCF and MRCI calculations. Potential energy curves have been determined for 21 2S+1Λ(+/−) and 42Ω(±) molecular states in the range of 1.70 to 3.50Å and the spectroscopic constants (Re, Te, ωe and ωeχe) have been deduced. Transition Dipole Moments have been computed for various allowed ΔΛ=0,±1 on the same range of internuclear distances. In the case of the ground state and the two expected lowest singlet excited states (1)1Π and (2)1Σ+, a good agreement with the experimental results is obtained while new results are reported for the not yet observed 18 2S+1Λ(+/−) and 42Ω(±) states. A comparison with previous studies on the Lutetium mono-halides LuF, LuCl and LuI is presented, leading to trends in transition energies, equilibrium distances and dipole moments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.