Abstract

In general, optical nanomaterials composed of noncentrosymmetric nanoscatterers are bifacial, meaning that two counter-propagating waves inside the material behave differently. Thus far a practical theory for the description of such materials has been missing. Herein, we present a theory that connects the design of the bifacial nanomaterial's "atoms" with the refractive index and wave impedance of the medium. We also introduce generalized Fresnel coefficients and investigate the role of electromagnetic multipoles on the bifaciality. We find that in any material two counter-propagating waves must experience the same refractive index, but their impedances can differ. The model is demonstrated in practice by the design of a nanomaterial slab with one of its facets being optically reflective, while the other being totally non-reflective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.