Abstract

Scattering matrix elements of the inelastic fine structure transition M(2P1/2) + Ng ↔ M(2P3/2) + Ng are computed using the channel packet method (CPM) for alkali-metal atoms M = K, Rb, and Cs, as they collide with noble-gas atoms Ng = He, Ne, and Ar. The calculations are performed within the block Born-Oppenheimer approximation where excited state VA2Π1/2(R), VA2Π3/2(R), and VB2Σ1/2(R) adiabatic potential energy surfaces are used together with a Hund's case (c) basis to construct a 6 × 6 diabatic representation of the electronic Hamiltonian. Matrix elements of the angular kinetic energy of the nuclei incorporate Coriolis coupling and, together with the diabatic representation of the electronic Hamiltonian, yield a 6 × 6 effective potential energy matrix. This matrix is diagonal in the asymptotic limit of large internuclear separation with eigenvalues that correlate to the 2Pj alkali atomic energy levels. Scattering matrix elements are computed using the CPM by preparing reactant and product wave packets on the effective potential energy surfaces that correspond to the excited 2Pj alkali states of interest. The reactant wave packet is then propagated forward in time using the split operator method together with a unitary transformation between the adiabatic and diabatic representations. The Fourier transformation of the correlation function between the evolving reactant wave packet and stationary product wave packet yields state-to-state scattering matrix elements as a function of energy for a particular choice of total angular momentum J. Calculations are performed for energies that range from 0.0 to 0.01 hartree and values of J that start with a minimum of J = 0.5 for all M + Ng pairs up to a maximum that ranges from J = 450.5 for KAr to J = 100.5 for CsAr. A sum over J together with an average over energy is used to compute thermally averaged cross sections for a temperature range of T = 0-400 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.