Abstract

CO2 reduction (CO2RR) and hydrogen evolution reactions (HER) are widely used in advanced energy conversion systems, which are urgently required low-cost and high efficient electrocatalysts to overcome the sluggish reaction kinetic and ultralow selectivity. Here, the single-, double-, and triple-atomic Cu embedded graphdiyne (Cu1-3@GDY) complexes have been systematically modeled by first-principles computations to evaluate the corresponding electric structures and catalytic performance. The results revealed that these Cu1-3@GDY monolayers possess high thermal stability by forming the firm Cu–C bonds. The Cu1-3@GDY complexes exhibit good electrical conductivity, which could promote the charge transfer in the electroreduction process. The electronic and magnetic interactions between key species (∗H, ∗COOH, and ∗OCHO) and Cu1-3@GDY complexes are responsible for the different catalytic performance of HER and CO2RR on different Cu1-3@GDY sheets. The Cu2@GDY complex could efficiently convert CO2 to CH4 with a rather low limiting potential of −0.42 V due to the spin magnetism of catalysts. The Cu1@GDY and Cu3@GDY exhibit excellent HER catalytic performance, and their limiting potentials are −0.18 and −0.02 V, respectively. Our findings not only provide a valuable avenue for the design of atomic metal catalysts toward various catalytic reactions but also highlight an important role of spin magnetism in electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.