Abstract
We theoretically compare the energies and wave functions of the electron/hole states between InP- and CdSe-based core/shell/shell colloidal quantum dots (QDs) and investigate how the bandgap energy of the core material affects the light emission characteristics such as the photoluminescence quantum yield and linewidth. The band diagrams and electron/hole energies of InP/ZnSe/ZnS and CdSe/ZnSe/ZnS QDs, having the same emission wavelength, are calculated on the basis of strain-modified effective mass approximation (EMA). The QD strain distribution, caused by the lattice mismatch, is considered based on the continuum elasticity theory. The energies and wave functions of all the electron and hole states in the InP- and CdSe-based core/shell/shell QDs are obtained through the analytical solution of the Schrodinger equation under the EMA. Then, the emission spectra of the two QDs are calculated while considering the homogeneous and inhomogeneous broadening. Finally, we elucidate why the emission characteristics of InP-based QDs, such as the quantum efficiency and emission linewidth, are inferior to those of CdSe-based QDs, and how these can be improved by using the III-V ternary core materials with a bandgap energy comparable to or larger than that of CdSe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.