Abstract

MP2 and symmetry-adapted perturbation theory calculations are used in conjunction with the aug-cc-pVQZ basis set to characterize the SF6 dimer. Both theoretical methods predict the global minimum structure to be of C2 symmetry, lying 0.07-0.16 kJ/mol below a C2h saddle point structure, which, in turn, is predicted to lie energetically 0.4-0.5 kJ/mol below the lowest-energy D2d structure. This is in contrast with IR spectroscopic studies that infer an equilibrium D2d structure. It is proposed that the inclusion of vibrational zero-point motion gives an averaged structure of D2d symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.