Abstract

We have studied the potential-energy curves and the spectroscopic constants of the ground and low-lying excited states of NbC by employing the complete active space self-consistent field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified 23 low-lying electronic states of NbC with different spin multiplicities and spatial symmetries within 40,000 cm(-1). At the multireference single and double configuration interaction level of theory the 2sigma+ and 2delta states are nearly degenerated, with the 2delta state located 187 cm(-1) lower than the 2sigma+ state. The estimated spin-orbit splitting for the 2delta state results in a 2delta(3/2) ground state and A 2sigma+ which is placed 650 cm(-1) above the ground state, in reasonable agreement with the experimental result, 831 cm(-1). Our computed spectroscopic constants are in good agreement with experimental values although our results differ from those of a previous density-functional investigation of the excited states of NbC, mainly due to the strong multiconfigurational character of NbC. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.