Abstract

Recently, an optimum mobility of 8.3 cm2/(Vs) has been measured for single-crystal organic field-effect transistors based on the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene (DNTT) molecule. Here, on the basis of quantum chemistry calculations and molecular dynamics simulations, we investigate the microscopic charge transport parameters of the DNTT molecule and crystal. Our findings confirm that the moderate anisotropy of the hole mobility in DNTT is highly dependent on the presence of in-plane herringbonelike intermolecular interactions with large electronic coupling (transfer integral) values (ca. 0.1 eV). Also, we demonstrate that the π-extended heteroaromatic structure leads to strong electronic coupling interactions among neighboring molecules and to a decrease of the intramolecular reorganization energy. In DNTT, thermal modulations of the electronic couplings at 300 K remain small when compared to those exhibited by the pentacene single crystal. This theoretical study suggests that heteroacenes are a promising route toward high-mobility organic semiconductor materials. Charge transport is discussed in the framework of both band and hopping models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.