Abstract

Using molecular dynamics simulations we characterize theoretically Coulomb clusters of laser- and sympathetically-cooled ions in a five-wire surface-electrode ion trap. We show that the asymmetry of the trapping potential leads to significantly different cluster structures and ion energy distributions in comparison to conventionally used linear Paul traps and to an asymmetric segregation of the ions in bi-component Coulomb clusters. We explore the impact of our results on the implementation of sympathetic cooling of molecular ions in surface-electrode traps and discuss possible challenges for the realization of such experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call