Abstract
Benchmark, full-dimensional calculations on the ground and excited vibrational states for the tetra-, and penta-atomic weakly bound He(2,3)ICl complexes are reported. The representation of the potential energy surfaces includes three-body HeICl potentials parameterized to coupled-cluster singles, doubles, and perturbative triples ab initio data. These terms are important in accurately describing the interactions of such highly floppy systems. The corresponding 6D/9D computations are performed with the multi-configuration time dependent Hartree method, using natural potential fits, and a mode combination scheme to optimize the computational effort in the improved relaxation calculations. For these complexes several low-lying vibrational states are computed, and their binding energies and radial/angular probability density distributions are obtained. We found various isomers which are assigned to different structural models related with combinations of the triatomic isomers, like linear, T-shaped, and antilinear ones. Comparison of these results with recent experimental data is presented, and the quantitative deviations found with respect to the experiment are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.