Abstract

To seek for high-performance small molecule donor materials used in heterojunction solar cell, six acceptor-donor-acceptor small molecules based on naphtho[2,3-b:6,7-b']dithiophene (NDT) units with different acceptor units were designed and characterized using density functional theory and time-dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 (TDPP = thiophene-capped diketopyrrolopyrrole). The open circuit voltage (V(oc)), energetic driving force(ΔE(L-L)), and exciton binding energy (E(b)) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3-7 match well with the acceptor material PC61 BM, and compounds 3-5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1, system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher V(oc), lower E(b), and similar carrier mobility. An in-depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call