Abstract

Theoretical calculations were carried out to predict the aqueous-phase acidities of a series of drug 1-phenyl-4-propylpiperazine and its derivatives. The performances of the density functional theory(DFT) methods B3LYP and B3P86, solvation models[the polarized continuum model(PCM) and the conductor-like polarized continuum model(CPCM)], and the basis set effect were tested. A comparison between the theoretical and experimental pK a values for para-substituted 1-phenyl-4-propylpiperazines reveals that the accuracy of B3LYP is better than that of B3P86, and the basis set 6-31++G(d,p) and the CPCM model are suitable for calculating pK a values of the substituted 1-phenyl-4-propylpiperazine. For the investigated compounds, a reasonable agreement between the experimental and calculated pK a values was also observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.