Abstract

The propargyl radical, the most stable isomer of neutral C3H3, is important in combustion reactions, and a number of spectroscopic and reaction dynamics studies have been performed over the years. However, theoretical calculations have never been able to find a state that can generate strong absorption around 242 nm as seen in experiments. In this study, we calculated the low-lying electronic energy levels of the propargyl radical using the highly accurate multireference configuration interaction singles and doubles method with triples and quadruples treated perturbatively [denoted as MRCISD(TQ)]. Calculations indicate that this absorption can be attributed to a Franck-Condon-allowed electronic transition from the ground 2B1 state to the Rydberg-like excited state 12A1. Further insight into the behavior of the multireference perturbative theory methods, GVVPT2 and GVVPT3, on a very challenging system are also obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call