Abstract

Semiclassical calculations of self-broadening and self-induced pressure shift coefficients in the ν 1 + ν 2 + ν 4 + ν 5 band of C2H2 have been performed by considering, in addition to the main electrostatic quadrupole–quadrupole interaction, a simple anisotropic dispersion contribution, leading to results in overall satisfactory agreement with recent measurements [C. Povey, A. Predoi-Cross and D.R. Hurtmans, J. Mol. Spectrosc., 268, 177 (2011)]. In these calculations we have used the mean relative velocity and also considered the Maxwell–Boltzmann distribution of relative velocities. From the theoretical results obtained at different temperatures ranging from 200 to 350 K, we have determined temperature exponents of the broadenings using a simple power law, as well as coefficients of empirical linear and quadratic temperature dependences for the line shifts. These theoretical exponents and linear coefficients, derived from averaging over the distribution of velocities and from the mean thermal velocity, are significantly different and they are compared with those obtained from measurements of broadening coefficients and line shifts performed in a comparable temperature range [C. Povey, A. Predoi-Cross and D.R. Hurtmans, J. Mol. Spectrosc., 268, 177 (2011)]. The theoretical variation of the self-shifts with temperature is not linear and can be well fitted by a quadratic polynomial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.